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In the case of orthodox fibre composite materials the mechanical properties of the 
interfaces are fixed at an almost constant level by a choice of materials and manufacturing 
techniques. In such systems semi-continuous reinforcing elements fail when the tensile 
strain in the composite becomes comparable with the failing strain of the fibres. It is shown 
that the reinforcing elements can be prevented from failing, whatever the tensile strain 
in the composite material, if the shear strength of the interface between the reinforcing 
elements and the rest of the composite structure is self adjusting and is reduced locally 
as the local tensile stress carried by a reinforcing element increases. The 
characteristics of experimental reinforcing elements possessing these features have been 
investigated and the properties of composites utilizing such fibres are discussed. 

1. I n t r o d u c t i o n  
In orthodox reinforced composite materials the 
fibres are usually strong, stiff and brittle and 
serve to stiffen and strengthen the matrix, 
primarily when the loads are applied in the 
direction of fibre alignment. In order that this 
may be achieved there must be some means of 
stress transfer between matrix and fibre across 
the fibre matrix interface. (For a discussion of 
this see, for example, [1].) Stress transfer can 
take place as a result of: 

(a) differential longitudinal elastic deformation 
between fibre and matrix; 

(b) frictional contact between fibre and matrix; 
(c) plastic deformation in shear of the matrix 

near the interface (where the matrix is a ductile 
metal). 

In reinforced polymers the stress transfer 
occurs normally by a combination of (a) and (b) 
[2, 3] whereas in fibre reinforced metals stress 
transfer is normally achieved through a com- 
bination of (a)and (c). In both cases the maximum 
value of shear stress transfer between individual 
fibres and the matrix is limited to a value which is 
set either by frictional effects (following debond- 
ing of the interface), or by the yield strength in 
shear of the matrix (if the matrix is deformable). 
In both conditions the shear strength of the 
interface is usually considered essentially con- 
stant over the stress transfer length of the fibre 
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so that, to a first approximation, the tensile 
stress carried by the fibre can be regarded as 
increasing uniformly from the free end at a rate 
governed by the effective strength in shear of the 
interface. When the fibre is cylindrical 

27x 
~ = (1) 

r 

where a~ is the tensile stress carried by the fibre 
at a distance x from the free end, r is the effective 
shear strength of the interface and r is the radius 
of the fibre. It follows from Equation 1 that if the 
fibre has a length greater than a critical length le 
where 

r 
/c = ~rult- (2) 

'1" 

and a,at is the ultimate breaking stress of the 
fibres, the fibre will break if sufficient tensile 
strain is applied to the composite [4]. If the fibres 
have a high aspect ratio the composite failing 
strain will be similar to the failing strain of the 
fibres themselves. In the case of simple fibre 
composites containing an appreciable volume 
fraction of semi-continuous, strong, brittle 
fibres (V > Verit) the failing strain of the 
composite is, therefore, controlled primarily by 
the failing strain of the fibres which, for materials 
of technological interest, is about 1 ~ .  If, 
however, ~- can be made a function of fibre 
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tensile stress o so that r diminishes as o- increases, 
falling to zero before o- reaches aunt, the fibre 
tensile stress can never reach aul, whatever the 
fibre length and whatever the longitudinal 
displacement of the matrix with respect to it. 

I f  we assume a linear relationship between the 
shear strength of the interface and the tensile 
stress carried by the fibre we have 

% = r o - Ko- (3) 

where % is the strength in shear of the interface 
when the local stress carried by the reinforcing 
element is o- and r o is the strength in shear of  the 
interface when the local fibre tensile stress is 
zero. 

Since % = 0 when o- = ~rmax 

K =  - - r ~  (4) 
O'ma x 

The rate of  change of tensile stress carried by a 
cylindrical reinforcing element with increasing 
distance x from the free end is given by 

do- 2% 

dx r 

dcr 2 
d--~ = r (% - Ke) 

o r  

do- 2roo- 2% 
dx + - -  (5) to- m a x  r 

from which we have 

o-~ = o-max [I - exp ( -  2% x/o-max r ) ] .  (6) 

It  follows from Equation 6 that in a system 
of this type the tensile stress carried by 
the reinforcing element will increase with 
increasing distance along the fibre and approach 
the limiting value ~rmax asymptotically. 

There are some advantages in providing an 
interface of this type between the core and the 
sheath of a two part  (duplex) reinforcing element 
[5]. In such an arrangement the core and sheath 
are effectively locked together and behave as a 
homogeneous solid reinforcing rod until the 
interracial frictional forces become low enough 
to permit differential movement between core 
and sheath. When the sheath element fails in 
tension the load carried locally is reduced by an 
amount equal to the contribution of the sheath 
before failure, the core element, however, 
continues to carry a tensile stress up to the 
limiting value Crmax. I f  failure of  the sheath 
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element occurs while the stress carried by the 
core is less than o-max the crack bridging core 
fibre can carry an increasing tensile stress with 
increasing tensile deformation of the composite 
up to the limiting value O'max. This increased 
load is supported by an increasing elastic 
extension in the bridging fibre. Since the shear 
strength of the fibre matrix interface falls as the 
local fibre tensile load increases, the effective 
length of the bridging fibre undergoing elastic 
extension also increases. Eventually the stress 
distribution along the core fibre reaches the 
condition described in Equation 6 and further 
extension of the composite structure results in 
the core fibre being pulled bodily through the 
sheath against frictional forces. 

2. An experimental duplex fibre system 
with self adjusting variable shear 
strength interface 

2.1. Initial observations 
2.1.1. Core element in tension 
One method of producing a variable shear 
strength interface between a core and sheath is 
to have the core in the form of a convoluted 
spring pressing against the inside of a tubular 
sheath. Th,e convolutions in such a system may 
be either helical or in a single plane, but in both 
cases the convolutions must be constrained by 
the walls of the tube so that a frictional force is 
generated between the core and sheath. I t  can 
be seen from geometrical considerations that 
when a tensile load is applied to an unconstrained 
convoluted core, the amplitude of the convolu- 
tions will be reduced so that when a tensile load 
is applied to a convoluted wire, initially con- 
strained by the tube, there is a consequent 
reduction in friction across the interface. When 
the lateral dimensions of the core under load 
become the same as the internal dimensions of  
the tube the frictional forces are reduced almost 
to zero. This condition is the basic requirement 
of a variable shear strength interface. 

Experimental reinforcing elements have been 
constructed, as described below, using con- 
voluted piano wire or stainless steel wire 
contained within stainless steel hypodermic 
tubes. A length of wire was taken rather more 
than twice the length of the required duplex 
element. About  half the length of this wire was 
closely wound onto a mandrel and then stretched 
to form an elongated helix with an external 
diameter greater than the i.d. of the tube. The 
straight section of the wire was then pushed 
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through the tube enabling the convoluted section 
to be pulled in after it. When a core wire is 
pulled into a tube initially, the interfacial 
contact area is small but the frictional interaction 
is very large, this means that the "pull-in" load 
is initially zero and rises rapidly as the first 
convolutions are pulled into the tube. As an 
increasing length of wire is pulled into the tube, 
the stress in the leading section of the core 
increases so that it makes a progressively smaller 
contribution to the frictional interaction. As a 
result of this, the rate of  increase of  "pull-in" 
load begins to diminish and finally approaches a 
limiting value. This limiting load is that which 
would be required to reduce the diameter of an 
unconstrained helix to that of the internal 
diameter of  the tube. The stress distribution 
along the convoluted wire is described by Equa- 
tion 6 and rises from zero at the point where the 
unstressed wire enters the tube to a value e~ 
corresponding to the length x inserted in the tube. 
According to the simple theory the same stress 
distribution is obtained as the wire is being 
drawn into or out of the tube. The stress level 
Crmax is, therefore, approached asymptotically as 
an increasing length of convoluted wire is 
contained within the tube. 

Initial experiments to investigate the charac- 
teristics of duplex reinforcing elements were 
carried out using wire and tube as shown below. 
The core elements were produced by winding the 
wire on a 1.03 m m  diameter mandrel and pre- 
stressing with a load of 5.0 kg. 

Core Sheath 

Material  Stainless steel wire 

Manufacturer  Stainless Steel Wire 
Co, Sheffield 

Outside diameter  
(D) (ram) 0.26 0.718 

Inside diameter  
(2x) (ram) - -  0.419 

Free amplitude 
(a) (mm) 0.507 - -  

Free wavelength 
(a) (mm) 4.73 - -  

Stainless steel 
hypodermic tube 

Accles and Pollock, 
Oldbury, 
Bi rmingham 

One end of the core wire was then suspended 
from the load cell of a table model lnstron 
testing machine and a weight, W, was applied to 
the other (see Fig. 1). A 10 cm length of hypo- 
dermic tube was then pulled down over the core 
wire and the load, F, measured by the load cell 
was recorded. The experiment was repeated with 
various tensile loads applied to the wire. I f  it is 
assumed that the load carried by the wire 

lOcm length of tube 

load measored by 
load cell, F 

helically crimped 
core wire 

testing machine 
moving crosshead 

weight,W 

Figure 1 General arrangement of equipment used for 
"pull through" experiments. 

increases linearly from W at one end to F at the 
other, the average tensile load on the wire is 
W + (F - W)/2 while the "pull through" load 
is F - W. By applying varying tensile loads to 
the wire, a curve of "pull through" load versus 
average tensile load was obtained (see Fig. 2). 
This curve, which can be seen to approximate to a 
straight line, was then produced to intercept the 
axes, f rom which were obtained values of %, the 
shear strength of the interface under zero tensile 
load in the core, and Lmax, the load necessary to 
debond the wire completely. The theoretical 
stress distribution along the core wire as it is 
pulled through the tube was then calculated by 
substituting these values into Equation 6. This 
curve labelled "uncorrected" is shown in Fig. 3. 
The experimental values of the loads required to 
pull the wire into and out of a long length of 
tube were then obtained for various lengths of 
core element in frictional contact with the tube 
and these are also shown in Fig. 3. In fact the 
effective average tensile load on the wire was 
not W + (F - W)/2 because the load does not 
vary linearly from W to F as assumed initially, 
but takes the form of a segment of an exponential 
curve. Using the "uncorrected" stress distribu- 
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Figure 2 Relationship between "pull through" load (F - W) and nominal tensile load W -4- (F -- W)/2 applied 
to the core wire. 

3.C 

2.0 

o J 

1-0 

QA 
A / |  AD u f-~O/~ u 

. / m ~ v l  f 
Y v ~  v 

~v  

~, & / ~ / ~ / ~  Corrected 

/ ~  ~ Uncorrected 

~v 

I0 - -  210 30 40 
Length of wire tube interface (cm) 

Figure 3 Experimental values of loads required to displace various lengths of convoluted wires within a tube, 
compared with calculated values. 

tion curve a more accurate value of  the true 
effective average load on the wire was obtained 
graphically and this was then resubstituted into 
Equation 6 and a second theoretical stress 
distribution was calculated and plotted - this is 
shown in Fig. 3 labelled "corrected". The 
correction procedure was not repeated since the 
correction factors became negligibly small in 
comparison with the experimental errors after 
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the first computation. 
The various experimental points shown in Fig. 

3 refer to the same wire and tube system but with 
the wire pulled through the tube in different 
directions. The experimental variability of  these 
results was further investigated by repeating the 
"pull-in" and "pull-out" observations for a 
second wire-tube assembly, of  nominally the 
same dimensions, after first pulling the wire 



SELF ADJUSTING INTERFACE COMPOSITES 

30 
~2"0 
_.I ~ 1.oi/~/i// Wire being drawn into tube in compression 

indicated thus 

lb  2b ~o - -  4'o 
Length of wire tube interface (cm) 

Figure 4 Average values, with 95% confidence limits indicated, for loads required to pull various lengths of 
convoluted core wire into and out of a tube. 

through the tube many times in order to develop 
a reasonably consistent interfacial condition. 
These data are shown in Fig. 4 where average 
load values and 95 ~ confidence limits on the 
mean values are shown. Data were obtained 
from four conditions, as the wire was pulled into 
and out of the tube, with the tube being support- 
ed at one end either in tension or compression as 
this was carried out. The load values obtained as 
the wire was drawn into the tube when the tube 
was in compression seemed significantly different 
from the rest, as is indicated in Fig. 4. The results 
from the other conditions were, from the 
available data, indistinguishable and are shown 
grouped together in Fig. 4. 

It seems probable that the reason for the 
difference noted was due to the slight buckling 
of the tube which occurs when the wire is drawn 
into the tube when it is held in compression and 
is unsupported laterally. This has the effect of 
increasing the frictional forces and calculations 
indicate that effects of the same order as those 
observed could be obtained. 

From the experimental values of amax and the 
other data given in Fig. 4, and assuming the 
validity of Equation 6, the numerical value of 
the constant 2~'0/Crmax r, was calculated for 
various inserted lengths of convoluted wire. The 
average value of 2r0/Crmax r was then used with 
Equation 6 to obtain the curve shown in Fig. 4. 
The value of % was then calculated, regarding 

the core-tube interface as being equivalent to the 
area of the internal surface of the tube, and a 
value of 0.039 kg mm -2 was obtained. The true 
shear strength of the interface must be much 
greater than this, however, since the actual 
area of contact between tube and wire is much 
less than the internal surface area of the tube. 
The effective value of ~'0 clearly depends upon the 
pressure exerted between the wire and the tube, 
which will depend on the geometry of the system, 
but is limited by the yield strength of the wire 
and tube. The value of emax is also dependent 
on these factors and this is discussed in Section 
2.2. 

2,1.2. Core element in compression 
When a convoluted wire is pushed into a tube the 
compressive longitudinal load applied to the 
wire would tend to increase the amplitude of the 
convolutions were the wire not restrained by the 
surrounding tube. As the compressive load is 
increased there is, therefore, an increasing 
pressure exerted by the wire on the wall of the 
tube and hence an increasing frictional force 
resisting the longitudinal displacement of the 
core wire within the tube. 

The relationship between the shear strength 
of the frictional interface r and the tensile stress 

applied to the core wire was assumed to be 
linear in Equation 3 and this has been shown to 
be in good agreement with a helically coiled 
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Figure 5 General  a r rangement  o f  appara tus  used to 
measu re  the  compressive loads required to cause the 
displacement of various lengths of core wire. 

wire/tube arrangement (Figs. 3 and 4). If a 
linear relationship between ~- and cr also holds in 
compression Equation 6 should describe the 
compressive stress distribution along a core 
element loaded at one end, and correspondingly, 
the stress required to overcome the frictional 
forces in pushing a given length of core element 
through a tube. 

A simple experimental investigation of this 
situation has been carried out as illustrated in 
Fig. 5. A helically coiled wire (system 4 Table I, 
Section 2.2.2.) was first drawn into a tube for a 
known distance and the load applied noted. The 
direction of the applied load was then reversed 
to push the wire out of the tube and the load 
required was again noted. During this part of the 
cycle the wire was prevented from buckling in 
compression by the supporting tube shown. 

Successively increasing lengths of core element 
were drawn into and pushed out of the tube, the 
applied loads being plotted in Fig. 6. The 
relationship between the loads applied in com- 
pression and tension and the length of wire 
embedded, x, were then obtained from Equation 
6 by substituting L~ and Lmax for ~r~ and Crmax 

where L~ and Lmax are loads instead of stresses. 

thus L~ = Lmax (1 - e - /~)  . (7) 

The value of Lmax was obtained from the extra- 
polated experimental data and the curve shown 
in Fig. 6 was calculated from Equation 7 by 
taking K as the average of the values computed 
for each of the experimental points. It is apparent 
from Fig. 6 that a theoretical curve calculated 
from an exponential relationship such as 
described in Equations 6 and 7 is in good agree- 
ment with experimental results when the core is 
loaded either in tension or compression. 

2.2. Calculation of theoretical values of 
O'ma x 

The numerical value of Crmax is clearly dependent 
upon the geometrical form of the convoluted 
core wire. It is apparent that O'max will become 
large as the diameter of the core wire approaches 
the internal diameter of the tube - providing the 
waveform of the unrestrained wire has an 
amplitude greater than that of the internal 
diameter of the tube. Calculations have been 
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Figure 6 Compress ive  and  tensile loads required to cause the longi tudinal  displacement  of  var ious  lengths of  core 
element.  
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Figure 7 (a) Diagrammatic representation of convoluted 
strip indicating geometrical measurements made. (b) 
Equilibrium forces in a convoluted strip. 

made of the numerical values of C'max which 
would be expected with two types of convoluted 
core element - the first having a sawtooth 
waveform, the second in the form of a helix. 
Examples of both arrangements have been 
examined experimentally and the results obtained 
compared with the calculated values. The 
behaviour of both the above systems was 
nominally elastic. Some preliminary observa- 
tions were also made of a duplex system in which 
the core element underwent some plastic 
deformation during debonding and withdrawal 
from the surrounding tube. 

2.2.1. Sawtooth waveform 
For these investigations a model form of variable 
shear strength interface was produced which 
consisted of a convoluted spring steel strip 
compressed elastically between a pair of parallel 
plates (Fig. 7a). Using this system it was 
possible to measure directly all the dimensional 
parameters used to compute values of ~max. 
Because the amplitude and thickness of the 
convoluted strip were small compared with its 
wavelength the force exerted by the strip at the 
points of contact between it and the parallel 
plates was calculated by considering each quarter 

wavelength as a cantilever, encastr6 at its point 
of contact with the surface (Fig. 7b). 

It follows that the force W exerted by each 
quarter wavelength of length y is given by 

3 E I A x  
y3 

where E is the young 's  modulus of the strip, I 
is the moment of inertia of its cross-section and 
A x  is the initial elastic deformation of the strip. 
Each half wavelength of the strip is in equilib- 
rium when a force W is applied at the "free-end" 
of the segment, i.e. midway between the plates 
acting towards and perpendicular to the plates. 

Any tensile load carried by the strip can be 
resolved into components perpendicular to and 
parallel with the plates. The resolved portion of 
the tensile load acting perpendicularly to the 
plates acts in opposition to the force W con- 
sidered to be acting at the ends of the half 
wavelength segments. If  this force is given by F 
sin 0 (where 0 is the angle between the strip and 
the parallel plates), the force exerted by the strip 
on the plate will be zero when F sin 0 + W = 0. 
This condition corresponds to •max. 

Now W = 3 E I A x / y  3 and as F at ~m~x = 
Crmax A, where A is the cross-sectional area of 
the strip, we have 

3 E I A x  
Crrnax A sin 0 = ya 

Since tan 0 is given by (x  - t /2 ) /y  where t is the 
thickness of the strip we have 

3 E I A x  
O'max = y3 A sin [tan -1 ( x  - t /2)/y] " (8) 

For  small angles of 0, sin 0 _ tan 0 so that 
Equation 8 can be written 

3 E I A x  
emax = y2 A (x  - t/2) (9) 

Equation 8 indicates that emax will tend to 
infinity when x approaches a value t /2 i.e. when 
the strip fills the entire space between the plates, 
providing that A x  has a finite value. 

Values of emnx predicted by Equation 8 have 
been compared with experimental values. These 
data were obtained from two series of experi- 
ments in which the behaviour of a convoluted 
steel strip (clock spring 0.40 mm thick and 6.26 
mm wide and also 0.31 mm x 8.75 ram) 
mounted between two fiat steel plates was 
observed. 
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In the first series of experiments a convoluted 
strip was placed between fiat steel plates which 
were then clamped down to fixed spacers so that 
a frictional force resisting the longitudinal 
displacement of the strip was generated. The 
loads required to overcome the frictional forces 
for various tensile loads applied to the strip were 
obtained as described in Section 2.1.1. The 
tensile load carried by the strip, when the force 
required to withdraw the strip tends to zero, was 
obtained by extrapolation of the experimental 
results. The tensile stress in the strip at this 
point then corresponds to amax- (PT/T values in 
Fig. 8.) 

In the second series of experiments the 
convoluted steel strips were placed between the 
plates and the separation of the plates was 
measured as the tensile load on the strip was 
varied. From these experimental observations 
the tensile load required to cause a given con- 
voluted strip to contract laterally to a dimension 
corresponding to a given separation of the 
parallel plates could be obtained. This condition 
again corresponds to the limiting debonding 
stress amax for a given geometrical arrangement 
(L/D values in Fig. 8). The wavelength of the 
convolutions is of course, increased as the 
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amplitude of the waveform is reduced, in Fig. 8 
experimental values of ar,~,, obtained by these 
two techniques for a range of wavelengths, 
amplitudes and plate separations, are compared 
with values computed from Equation 8. The 
observations fall into two groups, one with 
relatively short wavelength convolutions of 
about 17 mm, the other with longer wavelengths 
of about 32 mm. Typical waveforms for these 
groups are shown in Fig. 9a and b. The longer 
waveform convolutions correspond fairly closely 
with the assumptions made in the derivation of 
Equation 8, and the experimental values of 
O'max observed for this system agree quite well 
with the calculated values. In the case of the 
shorter wavelength system there is a progressively 
increasing discrepancy between observed and 
calculated values with increasing values of Crmax. 
The assumptions made in arriving at Equation 8 
are clearly not valid for this system. 

2.2.2. Helical core 

A short length of helix formed from a wire of 
circular cross-section can be considered as a 
beam having an initial radius of curvature of Pl. 
When a tensile load is applied to the end of the 
helix each segment is acted on by a couple which 
tends to straighten it thus increasing its radius of 
curvature. If the new radius of curvature is p2 
we have 

where M is the applied couple, E is the Young's 
modulus of the material forming the helix, I the 
moment of inertia of  the cross-section of wire 
forming the helix. 

If  we assume that the radius of curvature of 
the helix is the same as that of an ellipse, making 
the same angle e with a section cut at right 
angles to the longitudinal axis of the helix, 
we have from the properties of the ellipse, 

R 
P - -  cOS 2 0c 

where R is the radius of the cylinder upon the 
surface of which the axis of the wire forming the 
helix lies. The couple M applied to the helix by a 
tensile load L is given by 

_ . /cos2 ~1 cos 2 ~2~ 
LR2sin~2 = l z l ~  R1- R2 ] (10) 

where R1 is the radius of the helix when un- 
stressed, R~ is the radius of the helix when inside 
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Figure 9 Convoluted steel strip nominal wavelength (a) 

the tube,  and  cq and  ~2 are the cor responding  
helix angles. The elastic extension of  the wire 
under  load  is neglected since this will no t  affect 
the wavelength  o f  the helix and will only  
influence the d iameter  of  the helix th rough  
Poisson cont rac t ion  of  the wire. 

F o u r  exper imenta l  helical  core / tube  systems 
have been examined.  The helix wires were 
cons t ruc ted  by first close winding  the wire on a 
mandre l  and  then s t re tching it by  a sui table 
amoun t  to p roduce  a helix of  the requi red  form. 
In  the case o f  the samples  p roduced  the helix 
angle, ~, lay between 80 ~ and  85 ~ The wave- 
length of  the helical convolut ions ,  the outside 

17 mm; (b) 32 mm. 

d iameter  of  the helix and the thickness of  the 
wire were measured,  and  the value of  the load 
required to reduce the init ial  d iameter  of  the 
helix to tha t  of  the in ternal  d iameter  of  the tube 
was calcula ted f rom Equa t ion  10. This was then 
c o m p a r e d  with the observed l imit ing load  Lmax 
required to wi thdraw a long length of  helical 
core f rom the tube. 

in  Table  I this compar i son  is given together  
with details  of  the helically coi led wires and tubes 
used in the experiments.  The average in ternal  
d iameters  of  the tubes were ca lcula ted  by  
weighing the tubes,  measur ing  their  lengths and 
external  d iameters  and  assuming a mate r ia l  

TABLE I 

System 1 System 2 System 3 System 4 

Wire diameter (mm) 0.26 0.61 0.605 1.07 
Wire material st. steel st. steel piano wire piano wire 
Tube internal diameter (mm) 0.419 0.82 0.82 1.48 
Diameter of mandrel (mm) 1.99 1.03 1.03 1.99 
Free amplitude of helix (mm) 0.5075 0.87 0.865 1.56 
Initial wavelength x (mm) 4.729 6.0 6.045 11.25 
Wavelength in the tube ),~ (ram) 4.761 6.018 6.062 11.27 
Initial helix angle cq 80.65 ~ 82.25 ~ 82.3 ~ 82.14 ~ 
Helix angle in tube c% 83.75 ~ 83.63 ~ 83.7 ~ 83.27 ~ 
Youngs modulus of wire (kg mm -~) 1.52 x 104 1.52 x 104 2.07 x 104 2.07 x 10 ~ 
Lraax calculated (kg) 3.0 24.5 32.8 82.14 
Lmax experimental (kg) 2.9 22.0 30.0 92.85 
O'm~x experimental (kg mm -2) 55.0 76.0 104.0 103.25 
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specific gravity of 7.9. The wire d i a m e t e r s  
shown are average observed values. 

No attempt has been made to allow for local 
variations in the dimensions of the tubes and 
wires, but from Table I it is apparent that in the 
case of the systems studied reasonable agreement 
exists between the values of Lm~x calculated 
from Equation 10 and the observed experimental 
values. 

2.2.3. Non-e&stic situation 

In the conditions discussed above the deforma- 
tions imposed on the convoluted element were 
considered to remain within the elastic limit of 
the material. Characteristics similar to those of 
elastic systems can, however, be observed when 
the core element does not remain entirely elastic 
and where the debonding process results in 
plastic deformation of the core wire. 

Such a system was prepared by crimping steel 
piano wire of diameter 0.73 mm to form an 
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Figure 10 Loads required to pull various lengths Of 
plastically deforming convoluted wire into and out of a 
close fitting tube. 

approximately sinusoidal waveform having a 
wavelength of 4.117 mm and an amplitude of 
0.95 mm. The convoluted wire was then drawn 
into a steel hypodermic tube having a nominal 
i.d. of 0.820 mm and an o.d. of 1.065 ram. 
Because the thickness of the tube wall is rela- 
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tively small in this system, it was necessary to 
prevent the tube buckling as the wire was being 
inserted and this was achieved conveniently by 
first encapsulating the tube in a polymer block. 

Tensile stresses approaching 200 kg mm -2 have 
to be applied to the wire in order to draw it into 
the tube. These stresses are sufficiently high to 
cause non-elastic straightening of the wire. The 
load required to pull increasing lengths of wire 
into the tube is shown in Fig. 10. Also indicated 
in this diagram are the much smaller loads 
required to withdraw the wire from the tube in a 
direction opposite to that of the initial insertion. 
This is in contrast with the symmetrical dis- 
tribution observed for the elastic condition 
shown in Figs. 3 and 4. 

If non-elastic core duplex elements are con- 
structed by means other than pulling the core 
wire into the tube, for example, by drawing 
down a tube of larger diameter on to a previously 
inserted core, this asymmetrical condition during 
initial deformation should be avoidable. The 
load extension relationship during pull out of the 
core would then be expected to be similar to the 
"pull-in" curve, as is the case with the elastic 
systems. 

3. Behav iour  of a dup lex  fibre reinforced 
composi te  system in tension 

A preliminary study has been made of the 
deformation and failure in tension of composites 
consisting of an epoxy resin matrix reinforced 
with a small number of unidirectionally aligned 
steel two part duplex reinforcing elements 
similar to those discussed in Section 2.2.2. The 
volume fraction of the reinforcing phase was 
about 10%. Similar specimens containing the 
same number of unidirectionally aligned wires 
and tubes were prepared, but in these samples the 
wires were not placed within the tubes, both 
wires and tubes being encapsulated individually 
in the matrix resin. 

In all the specimens the resin was notched to 
initiate failure in the centre of the specimen when 
stressed in tension in the direction of fibre 
alignment. In the case of the second con- 
figuration, in which both wires and tubes were 
encapsulated in the resin, failure occurred by the 
propagation of a single planar crack. Both wires 
and tubes failed close to the crack surface with 
little deformation and absorption of energy 
(Fig. l la).  In the case of the duplex fibre rein- 
forced system a similar failure of matrix and 
tubes was also observed but the core elements 
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Figure l l  (a) Fracture surface of epoxy resin with in- 
dividually encapsulated tube and wire reinforcing ele- 
ments. (b) Fracture surface of epoxy resin with tubes and 
wires arranged as duplex elements. Wire diameter, 0.73 
ram. Tube i.d., 0.825 ram; o.d. 1.06 rrml. 

were left intact bridging the transverse crack in 
the composite (Fig. 1 lb). 

For both types of composite the stress required 
to cause initial failure is largely determined by 
the stress concentrating ability of the notch. The 
duplex fibre system continues to carry a load 
beyond the point of initial failure and the stress 
level which it can support is controlled by the 
value of the stress which the core elements carry, 
and their volume fraction in the composite 
structure. 

The amount of elongation and the overall 

shape of the load extension curve for the duplex 
fibre system depends on the specimen length. 
If the specimen is short compared with the stress 
transfer length, the stress carried by the core 
wires at the point of initial failure, can be 
appreciably less than ~rmax. However, if the 
specimen is long compared with the stress trans- 
fer length then the core wires carry a stress near 
to ~rmax and this does not change appreciably 
during the early stages of the deformation 
process. If the reinforcing elements are effectively 
infinitely long, as is the case for example in a 
filament wound structure, it would seem that 
very large "local" tensile extensions will be 
possible, in the fibre direction, since the core 
wires can then be pulled considerable distances 
through the composite structure. 

4. Discussion of results and of possible 
technological applications of duplex 
fibre composites 

4.1. General comments 
The experimental observations outlined above 
demonstrate the feasibility of producing fibrous 
composites in which the local shear strength of 
the interface between the reinforcing phase and 
the rest of the composite structure is controlled 
by the local tensile stress carried by the rein- 
forcing elements. It has been shown that 
reinforcing elements of this type can carry high 
stresses across transverse matrix cracks essen- 
tially independent of the overall tensile strain 
developed in the composite material. Also the 
core element reinforcing phase is not sensitive 
to matrix cracks. The experimental work has been 
solely concerned with steel two-part reinforcing 
elements used in conjunction with an epoxy 
resin matrix, However, since the reinforcing 
elements have been shown to be capable of 
operating within the elastic range of the material 
it may prove possible to construct duplex fibres 
from low density strong brittle elastic materials. 

In the case of the particular systems studied the 
maximum rate of shear stress transfer between 
core and sheath was of the same order of 
magnitude (but rather less) than that occurring 
in glass fibre resin systems, if the area of  the 
interface is assumed to correspond with the 
surface area of the helical wire. Although higher 
values may be attainable through an increase in 
contact pressure and the area of interfacial 
contact, it would seem unlikely that shear stress 
transfer values appreciably greater than those 
found in existing polymer matrix composites will 
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be attainable by these means. When these 
relatively low values of shear stress transfer are 
associated with the use of large diameter elements 
fairly large stress transfer lengths, perhaps of the 
order of 10 cm, will be required for the core 
fibres to develop a large fraction of their maxi- 
mum load carrying ability. Applications are 
therefore likely to be limited to large engineering 
components, particularly filament wound struc- 
tures, when the maximum contribution by the 
core to the stiffness and strength of the composite 
structure is required. These considerations do 
not necessarily apply where the primary technical 
requirement hinges on the load limiting and 
energy absorbing characteristics of the system. 

During the course of the experimental work 
described above, the outer tubular elements 
have been considered simply as a means to 
provide a self adjusting shear strength interface 
between the core element and the rest of the 
composite structure. Clearly the tubular elements 
and the outer interface can function as a second 
reinforcing phase operating largely indepen- 
dently of the core element reinforcing system and 
the possible advantages of this have been 
discussed in more detail elsewhere [5]. The 
tubular elements can contribute to the tensile 
strength of the composite - up to the point of 
initial failure - and also to the work of fracture, 
if a suitable distribution of flaws is provided [6]. 

4.2. Transverse crack propagation in duplex 
fibre composites 

In present day fibrous composites the interfacial 
characteristics are normally arranged so that a 
propagating matrix crack does not cause 
immediate failure of the fibres and they are left 
intact bridging the crack tip. Such fibres will fail 
if their failing strain is exceeded. In the case of 
the stress controlled reinforcing systems de- 
scribed above, the fibres can remain intact 
bridging the entire length of a matrix crack 
despite large separations of the crack faces. 

Observations have been made [7, 8], of the 
work of fracture of a thin metal plate reinforced 
with a small volume fraction of reinforcing 
elements of this type. The crack was propagated 
by a crack opening force applied at the mouth of 
the crack and the work of fracture was found to 
increase with increasing crack length. Very high 
specific energy absorption values (energy ab- 
sorbed per unit cross-sectional area of core ele- 

ments) were observed when the matrix crack 
reached an appreciable size. 

When a reinforced plate of this type is sub- 
jected to a uniform stress applied in the direction 
of fibre alignment there are two general con- 
ditions to consider. If the stress carried by the 
reinforcing elements approaches anaax then the 
elements are effectively decoupled from the 
composite structure and their only effect is to 
reduce the load which would otherwise be carried 
by the plate. If, however, during crack propaga- 
tion in the plate, the stress carried by the rein- 
forcing element is less than amax there will be an 
interaction between the plate and the reinforcing 
phase. This can have two effects. If any differen- 
tial movement occurs between the plate and the 
crack bridging reinforcing elements, then energy 
will be dissipated by frictional effects. At the 
same time the reinforcing phase tends to restrain 
the plate from relaxing as much as it would 
otherwise have done in the absence of the crack 
bridging reinforcing elements. The effect of this 
is to reduce the amount of strain energy available 
to propagate the crack and to provide an addi- 
tional mechanism by which strain energy is 
absorbed compared with the unreinforced 
condition [9]. 
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